Skip to main content

Anthropic API Integration Guide

Overview​

Comprehensive integration guide for Anthropic's Claude models within the LLM Platform ecosystem. This document provides technical specifications, integration patterns, and enterprise deployment considerations for government and defense applications.

Available Models​

Claude Model Family​

Claude Haiku​

  • Purpose: Lightweight, fast operations
  • Use Cases: Real-time chat, quick content generation, API responses
  • Performance: Optimized for speed over complexity
  • Enterprise Fit: High-throughput applications, customer support automation

Claude Sonnet​

  • Purpose: Balanced performance and speed
  • Use Cases: Content creation, code analysis, document processing
  • Performance: Best combination of capability and response time
  • Enterprise Fit: General-purpose AI applications, workflow automation

Claude Opus​

  • Purpose: Highest-performing model for complex tasks
  • Use Cases: Advanced reasoning, complex analysis, strategic planning
  • Performance: Maximum capability, higher latency
  • Enterprise Fit: Critical decision support, complex document analysis

API Architecture​

Authentication & Security​

// Enterprise authentication pattern
const anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
baseURL: process.env.ANTHROPIC_BASE_URL || 'https://api.anthropic.com',
defaultHeaders: {
'x-organization-id': process.env.ORG_ID,
'x-project-id': process.env.PROJECT_ID
}
});

Integration Patterns​

Direct API Integration​

// Basic message completion
const message = await anthropic.messages.create({
model: "claude-3-5-sonnet-20241022",
max_tokens: 4096,
temperature: 0.1,
system: "You are an AI assistant for government operations.",
messages: [{
role: "user",
content: "Analyze this policy document for compliance issues."
}]
});

Enterprise Features​

Rate Limits & Scaling​

  • Self-serve tiers: Automatically increasing limits based on usage
  • Enterprise tiers: Custom rate limits and monthly billing
  • Load balancing: Distribute requests across multiple API keys

Security Considerations​

  • API Key Management: Integrate with HashiCorp Vault or AWS Secrets Manager
  • Request Logging: Comprehensive audit trails for compliance
  • Data Residency: Control over data processing locations
  • Encryption: All communications use TLS 1.3

Government & Defense Considerations​

Compliance Requirements​

  • FedRAMP: Available through AWS Bedrock GovCloud
  • FISMA: Supports moderate and high impact systems
  • ITAR: Export control compliance for defense applications
  • Section 508: Accessibility compliance for government services

Data Sovereignty​

  • On-premises Options: Not available (cloud-only service)
  • Government Cloud: Available via AWS GovCloud and Azure Government
  • Data Residency: Configurable processing locations
  • Audit Trails: Comprehensive logging and monitoring

LLM Platform Integration​

Drupal AI Module Integration​

<?php
// Anthropic provider implementation for Drupal AI module
class AnthropicProvider extends ProviderPluginBase {

public function chat(array $messages, string $model_id): ChatResponseInterface {
$client = $this->getHttpClient();

$response = $client->request('POST', $this->getApiUrl() . '/messages', [
'headers' => [
'Authorization' => 'Bearer ' . $this->getApiKey(),
'Content-Type' => 'application/json',
'anthropic-version' => '2023-06-01'
],
'json' => [
'model' => $model_id,
'max_tokens' => $this->configuration['max_tokens'],
'messages' => $this->formatMessages($messages)
]
]);

return $this->parseResponse($response);
}
}

Best Practices​

Prompt Engineering​

  • Use system messages for consistent behavior
  • Implement conversation memory management
  • Optimize token usage with efficient prompts

Error Handling​

  • Implement exponential backoff for rate limits
  • Graceful degradation when API is unavailable
  • Comprehensive error logging and alerting

Security​

  • Never log sensitive data or API responses
  • Implement proper input sanitization
  • Use least-privilege access principles

This document is part of the comprehensive LLM Platform documentation suite.