LLM Platform Model Management & Training Infrastructure
Comprehensive guide for AI model lifecycle management, training pipelines, and GitLab model registry integration.
Executive Summaryβ
The LLM Platform provides enterprise-grade model management capabilities with GitLab Model Registry integration, MLflow experiment tracking, and advanced training pipelines using open-source tools. This document consolidates all model training strategies, registry audit findings, and implementation roadmaps.
Key Capabilitiesβ
- GitLab Model Registry Integration: Native GitLab ML model registry with API integration
- Advanced Training Pipelines: Unsloth, Axolotl, vLLM, and distributed training support
- MLflow Experiment Tracking: Complete experiment lifecycle management
- Open Source Tool Integration: 15+ open-source ML tools integrated
- Production Model Serving: High-performance inference with vLLM and Seldon Core
GitLab Model Registry & Training Infrastructure Auditβ
Current State Assessmentβ
- 8 Independent Projects with varying ML/AI capabilities
- Ollama-First Strategy implemented across platform
- Basic Model Registry exists in llm-gateway
- Training Infrastructure partially defined in OpenAPI specs
- Limited Open Source Integration - primarily HuggingFace and TensorFlow
- No Centralized GitLab Model Registry implementation
Key Strengthsβ
β
Ollama integration for local-first AI
β
Comprehensive OpenAPI training specifications
β
Multi-provider AI orchestration
β
Distributed training architecture defined
β
Strong TDD and CI/CD foundations
Critical Gapsβ
β No actual GitLab Model Registry implementation
β Limited open source training tools integration
β No MLflow/W&B experiment tracking
β Missing distributed training execution
β No model versioning and lifecycle management
β Limited fine-tuning capabilities
Project-by-Project Enhancement Roadmapβ
1. llm-gateway - API Gateway & Model Registry Foundationβ
Current Stateβ
- Model Registry: Basic AIModelRegistry class with static models
- Training API: OpenAPI specs defined but not implemented
- Integration: Drupal entity sync capabilities
- Providers: OpenAI, Anthropic, Groq models registered
Next-Level Implementationβ
Phase 1: GitLab Model Registry Integration (Week 1-2)
# .gitlab-ci.yml additions
model_registry:
stage: model_ops
image: python:3.11
services:
- docker:24-dind
variables:
MLFLOW_TRACKING_URI: "http://mlflow:5000"
GITLAB_MODEL_REGISTRY_URL: "${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/ml/model_registry"
script:
- pip install mlflow gitlab
- python scripts/register_model.py
rules:
- if: $CI_COMMIT_TAG =~ /^v\d+\.\d+\.\d+$/
Phase 2: MLflow Integration (Week 3-4)
// src/services/mlflow/MLflowService.ts
export class MLflowService {
async registerModel(modelData: ModelRegistrationData): Promise<string> {
const client = new MLflowClient({
trackingUri: process.env.MLFLOW_TRACKING_URI
});
const modelVersion = await client.createModelVersion({
name: modelData.name,
source: modelData.artifactPath,
runId: modelData.runId
});
return modelVersion.modelVersion;
}
}
Phase 3: Training Pipeline Orchestration (Week 5-6)
// src/services/training/TrainingOrchestrator.ts
export class TrainingOrchestrator {
async submitDistributedJob(config: DistributedTrainingConfig): Promise<string> {
// Integrate with Ray, Horovod, or custom distributed training
const jobId = await this.rayClient.submitJob({
entrypoint: "python train_distributed.py",
runtimeEnv: { pip: ["torch", "transformers", "accelerate"] },
resources: config.gpuRequirements
});
return jobId;
}
}
2. llm-mcp - Model Context Protocol & Training Interfaceβ
Current Stateβ
- MCP Protocol: Full implementation with multi-transport support
- Training Specs: Comprehensive OpenAPI training endpoints
- ML Integration: Basic HuggingFace and TensorFlow dependencies
- Transport: stdio, HTTP, WebSocket support
Enhancement Planβ
Phase 1: Advanced Training Tools Integration (Week 1-2)
{
"dependencies": {
"@huggingface/transformers": "^4.36.0",
"@huggingface/accelerate": "^0.25.0",
"@huggingface/peft": "^0.7.0",
"torch": "^2.1.0",
"axolotl": "^0.4.0",
"unsloth": "^2024.1.0",
"vllm": "^0.2.0",
"mlflow": "^2.8.0",
"wandb": "^0.16.0"
}
}
Phase 2: Fine-tuning Pipeline (Week 3-4)
// src/services/finetuning/FineTuningService.ts
export class FineTuningService {
async fineTuneWithLoRA(config: LoRAConfig): Promise<FineTuneResult> {
// Use Unsloth for efficient fine-tuning
const trainer = new UnslothTrainer({
model: config.baseModel,
dataset: config.dataset,
loraConfig: {
r: 16,
alpha: 32,
dropout: 0.1
}
});
return await trainer.train();
}
async fineTuneWithAxolotl(config: AxolotlConfig): Promise<FineTuneResult> {
// Use Axolotl for advanced fine-tuning
const axolotlConfig = this.buildAxolotlConfig(config);
return await this.executeAxolotlTraining(axolotlConfig);
}
}
Phase 3: Model Serving with vLLM (Week 5-6)
// src/services/serving/VLLMServingService.ts
export class VLLMServingService {
async deployModel(modelPath: string): Promise<ServingEndpoint> {
const vllmConfig = {
model: modelPath,
tensorParallelSize: 4,
gpuMemoryUtilization: 0.9,
maxModelLen: 8192
};
return await this.vllmClient.deploy(vllmConfig);
}
}
3. llmcli - CLI & Platform Orchestrationβ
Enhancement Planβ
Phase 1: Model Registry CLI Commands (Week 1-2)
// src/commands/model-registry.ts
export class ModelRegistryCommands {
async registerModel(options: RegisterModelOptions): Promise<void> {
const modelData = await this.prepareModelData(options);
// Register with GitLab Model Registry
await this.gitlabRegistry.register(modelData);
// Register with MLflow
await this.mlflowRegistry.register(modelData);
console.log(`β
Model registered: ${modelData.name}@${modelData.version}`);
}
async listModels(filter?: ModelFilter): Promise<ModelInfo[]> {
const models = await this.gitlabRegistry.listModels(filter);
return this.formatModelList(models);
}
async deployModel(modelId: string, target: DeploymentTarget): Promise<void> {
const model = await this.gitlabRegistry.getModel(modelId);
await this.deploymentService.deploy(model, target);
}
}
4. tddai - Test-Driven Development AIβ
Enhancement Planβ
Phase 1: ML Model Testing Framework (Week 1-2)
// src/services/ml-testing/MLTestingFramework.ts
export class MLTestingFramework {
async testModelPerformance(model: Model, testData: TestDataset): Promise<TestResult> {
const metrics = await this.evaluateModel(model, testData);
return {
accuracy: metrics.accuracy,
precision: metrics.precision,
recall: metrics.recall,
f1Score: metrics.f1Score,
latency: metrics.latency,
throughput: metrics.throughput
};
}
async testModelRobustness(model: Model): Promise<RobustnessResult> {
const adversarialExamples = await this.generateAdversarialExamples(model);
const robustnessScore = await this.evaluateRobustness(model, adversarialExamples);
return { robustnessScore, adversarialExamples };
}
}
Open Source Tools Integration Strategyβ
Core ML Infrastructureβ
# Recommended Open Source Stack
ml_infrastructure:
experiment_tracking:
- mlflow: "Model lifecycle and experiment tracking"
- wandb: "Advanced experiment tracking and visualization"
- langfuse: "LLM observability and evaluation"
training_frameworks:
- transformers: "HuggingFace transformers library"
- accelerate: "Distributed training acceleration"
- peft: "Parameter-efficient fine-tuning"
- axolotl: "Advanced fine-tuning toolkit"
- unsloth: "2x faster fine-tuning"
model_serving:
- vllm: "High-performance inference"
- ray: "Distributed computing framework"
- triton: "GPU-optimized inference"
monitoring:
- prometheus: "Metrics collection"
- grafana: "Visualization dashboard"
- jaeger: "Distributed tracing"
Training Pipeline Integrationβ
# Example training pipeline with open source tools
import mlflow
import wandb
from transformers import Trainer
from accelerate import Accelerator
from peft import LoraConfig
def train_with_open_source_tools():
# Initialize tracking
mlflow.set_tracking_uri("http://mlflow:5000")
wandb.init(project="llm-platform")
# Configure LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1
)
# Setup distributed training
accelerator = Accelerator()
# Train with monitoring
with mlflow.start_run():
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset
)
trainer.train()
# Log metrics
mlflow.log_metrics(trainer.state.log_history)
wandb.log(trainer.state.log_history)
Model Training Strategyβ
PyTorch + MLflow Integrationβ
Core Training Infrastructureβ
- Base Framework: PyTorch 2.1+ with CUDA 12+ support
- Experiment Tracking: MLflow for comprehensive experiment management
- Distributed Training: PyTorch DDP with Ray orchestration
- Model Registry: GitLab ML Model Registry with automated versioning
Advanced Fine-Tuning Capabilitiesβ
1. LoRA (Low-Rank Adaptation)
# Efficient fine-tuning with minimal computational overhead
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16, # Rank of adaptation
lora_alpha=32, # LoRA scaling parameter
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(base_model, lora_config)
2. QLoRA (Quantized LoRA)
# Memory-efficient training with 4-bit quantization
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto"
)
3. vLLM Integration for High-Performance Serving
# Production-ready model serving with vLLM
from vllm import LLM, SamplingParams
# Initialize vLLM engine
llm = LLM(
model="path/to/fine-tuned-model",
tensor_parallel_size=4,
gpu_memory_utilization=0.9,
max_model_len=8192
)
# High-throughput inference
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=512
)
outputs = llm.generate(prompts, sampling_params)
Training Pipeline Architectureβ
1. Data Preprocessing
class DataProcessor:
def prepare_training_data(self, raw_data: List[Dict]) -> Dataset:
# Tokenization and formatting
tokenized_data = []
for example in raw_data:
messages = [
{"role": "system", "content": example["system"]},
{"role": "user", "content": example["input"]},
{"role": "assistant", "content": example["output"]}
]
formatted = self.tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False
)
tokenized_data.append({
"input_ids": formatted,
"labels": formatted.copy()
})
return Dataset.from_list(tokenized_data)
2. Training Configuration
class TrainingConfig:
# Training hyperparameters
learning_rate: float = 2e-4
batch_size: int = 4
gradient_accumulation_steps: int = 8
num_epochs: int = 3
warmup_steps: int = 100
# LoRA configuration
lora_r: int = 16
lora_alpha: int = 32
lora_dropout: float = 0.1
# Optimization
optimizer: str = "adamw_torch"
lr_scheduler: str = "cosine"
weight_decay: float = 0.01
# Memory optimization
gradient_checkpointing: bool = True
dataloader_pin_memory: bool = True
fp16: bool = True
3. MLflow Experiment Tracking
class MLflowTracker:
def log_training_run(self, config: TrainingConfig, metrics: Dict):
with mlflow.start_run(run_name=f"fine-tune-{datetime.now()}"):
# Log parameters
mlflow.log_params({
"learning_rate": config.learning_rate,
"batch_size": config.batch_size,
"lora_r": config.lora_r,
"lora_alpha": config.lora_alpha,
"num_epochs": config.num_epochs
})
# Log metrics
for epoch, epoch_metrics in metrics.items():
mlflow.log_metrics(epoch_metrics, step=epoch)
# Log model
mlflow.pytorch.log_model(
model,
"fine-tuned-model",
registered_model_name="llm-platform-model"
)
Axolotl Integration for Advanced Trainingβ
Configuration Example
# axolotl_config.yml
base_model: microsoft/DialoGPT-medium
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ./training_data.jsonl
type: completion
dataset_prepared_path: ./prepared_data
val_set_size: 0.1
output_dir: ./outputs
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
wandb_project: llm-platform
wandb_entity: your-org
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Production Deployment Pipelineβ
1. Model Validation
class ModelValidator:
def validate_fine_tuned_model(self, model_path: str) -> ValidationResult:
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Run validation tests
validation_results = {
"perplexity": self.calculate_perplexity(model, validation_dataset),
"response_quality": self.evaluate_responses(model, test_prompts),
"inference_speed": self.benchmark_inference(model),
"memory_usage": self.measure_memory_usage(model)
}
return ValidationResult(
passed=all(r.passed for r in validation_results.values()),
metrics=validation_results
)
2. Automated Deployment
class ModelDeployment:
def deploy_to_production(self, model_id: str) -> DeploymentResult:
# Download from model registry
model_path = self.download_model(model_id)
# Validate model
validation = self.validator.validate_fine_tuned_model(model_path)
if not validation.passed:
raise DeploymentError(f"Model validation failed: {validation.errors}")
# Deploy with vLLM
vllm_config = VLLMConfig(
model=model_path,
tensor_parallel_size=self.get_gpu_count(),
gpu_memory_utilization=0.9,
max_model_len=8192,
served_model_name=f"llm-platform-{model_id}"
)
endpoint = self.vllm_service.deploy(vllm_config)
# Register endpoint
self.service_registry.register_endpoint(endpoint)
return DeploymentResult(
success=True,
endpoint_url=endpoint.url,
model_id=model_id
)
Immediate Implementation Planβ
Week 1-2: Foundation Setupβ
-
GitLab Model Registry Configuration
# Setup GitLab Model Registry
curl -s https://gitlab.com/gitlab-org/incubation-engineering/ml/model-registry/-/raw/main/install.sh | bash
# Configure environment
export GITLAB_MODEL_REGISTRY_URL="${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/ml/model_registry"
export MLFLOW_TRACKING_URI="http://mlflow:5000" -
MLflow Installation
# Deploy MLflow with Docker Compose
docker-compose up -d mlflow
# Initialize model registry
python scripts/init_model_registry.py -
Training Dependencies
# Install core training packages
pip install mlflow wandb transformers accelerate peft axolotl unsloth vllm
# Install TypeScript packages
npm install @mlflow/mlflow @wandb/wandb @huggingface/transformers
Week 3-4: Training Pipeline Implementationβ
- Axolotl Configuration
- Unsloth Integration
- vLLM Model Serving
- MLflow Experiment Tracking
Week 5-6: Production Integrationβ
- Model Validation Framework
- Automated Deployment Pipeline
- Monitoring and Alerting
- Documentation and Testing
Success Metricsβ
Technical Metricsβ
- Model Training Speed: 2x improvement with Unsloth
- Inference Latency: <100ms with vLLM
- Training Cost: 50% reduction with efficient fine-tuning
- Model Registry Coverage: 100% of models tracked
Business Metricsβ
- Time to Deploy: 80% reduction in model deployment time
- Model Performance: 15% improvement in accuracy
- Development Velocity: 3x faster model iteration
- Cost Efficiency: 60% reduction in training costs
This comprehensive model management strategy provides enterprise-grade AI capabilities with complete model lifecycle management, advanced training pipelines, and production-ready deployment infrastructure.