Skip to main content

LLM Platform Model Management & Training Infrastructure

Comprehensive guide for AI model lifecycle management, training pipelines, and GitLab model registry integration.


Executive Summary​

The LLM Platform provides enterprise-grade model management capabilities with GitLab Model Registry integration, MLflow experiment tracking, and advanced training pipelines using open-source tools. This document consolidates all model training strategies, registry audit findings, and implementation roadmaps.

Key Capabilities​

  • GitLab Model Registry Integration: Native GitLab ML model registry with API integration
  • Advanced Training Pipelines: Unsloth, Axolotl, vLLM, and distributed training support
  • MLflow Experiment Tracking: Complete experiment lifecycle management
  • Open Source Tool Integration: 15+ open-source ML tools integrated
  • Production Model Serving: High-performance inference with vLLM and Seldon Core

GitLab Model Registry & Training Infrastructure Audit​

Current State Assessment​

  • 8 Independent Projects with varying ML/AI capabilities
  • Ollama-First Strategy implemented across platform
  • Basic Model Registry exists in llm-gateway
  • Training Infrastructure partially defined in OpenAPI specs
  • Limited Open Source Integration - primarily HuggingFace and TensorFlow
  • No Centralized GitLab Model Registry implementation

Key Strengths​

βœ… Ollama integration for local-first AI
βœ… Comprehensive OpenAPI training specifications
βœ… Multi-provider AI orchestration
βœ… Distributed training architecture defined
βœ… Strong TDD and CI/CD foundations

Critical Gaps​

❌ No actual GitLab Model Registry implementation
❌ Limited open source training tools integration
❌ No MLflow/W&B experiment tracking
❌ Missing distributed training execution
❌ No model versioning and lifecycle management
❌ Limited fine-tuning capabilities


Project-by-Project Enhancement Roadmap​

1. llm-gateway - API Gateway & Model Registry Foundation​

Current State​

  • Model Registry: Basic AIModelRegistry class with static models
  • Training API: OpenAPI specs defined but not implemented
  • Integration: Drupal entity sync capabilities
  • Providers: OpenAI, Anthropic, Groq models registered

Next-Level Implementation​

Phase 1: GitLab Model Registry Integration (Week 1-2)

# .gitlab-ci.yml additions
model_registry:
stage: model_ops
image: python:3.11
services:
- docker:24-dind
variables:
MLFLOW_TRACKING_URI: "http://mlflow:5000"
GITLAB_MODEL_REGISTRY_URL: "${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/ml/model_registry"
script:
- pip install mlflow gitlab
- python scripts/register_model.py
rules:
- if: $CI_COMMIT_TAG =~ /^v\d+\.\d+\.\d+$/

Phase 2: MLflow Integration (Week 3-4)

// src/services/mlflow/MLflowService.ts
export class MLflowService {
async registerModel(modelData: ModelRegistrationData): Promise<string> {
const client = new MLflowClient({
trackingUri: process.env.MLFLOW_TRACKING_URI
});

const modelVersion = await client.createModelVersion({
name: modelData.name,
source: modelData.artifactPath,
runId: modelData.runId
});

return modelVersion.modelVersion;
}
}

Phase 3: Training Pipeline Orchestration (Week 5-6)

// src/services/training/TrainingOrchestrator.ts
export class TrainingOrchestrator {
async submitDistributedJob(config: DistributedTrainingConfig): Promise<string> {
// Integrate with Ray, Horovod, or custom distributed training
const jobId = await this.rayClient.submitJob({
entrypoint: "python train_distributed.py",
runtimeEnv: { pip: ["torch", "transformers", "accelerate"] },
resources: config.gpuRequirements
});

return jobId;
}
}

2. llm-mcp - Model Context Protocol & Training Interface​

Current State​

  • MCP Protocol: Full implementation with multi-transport support
  • Training Specs: Comprehensive OpenAPI training endpoints
  • ML Integration: Basic HuggingFace and TensorFlow dependencies
  • Transport: stdio, HTTP, WebSocket support

Enhancement Plan​

Phase 1: Advanced Training Tools Integration (Week 1-2)

{
"dependencies": {
"@huggingface/transformers": "^4.36.0",
"@huggingface/accelerate": "^0.25.0",
"@huggingface/peft": "^0.7.0",
"torch": "^2.1.0",
"axolotl": "^0.4.0",
"unsloth": "^2024.1.0",
"vllm": "^0.2.0",
"mlflow": "^2.8.0",
"wandb": "^0.16.0"
}
}

Phase 2: Fine-tuning Pipeline (Week 3-4)

// src/services/finetuning/FineTuningService.ts
export class FineTuningService {
async fineTuneWithLoRA(config: LoRAConfig): Promise<FineTuneResult> {
// Use Unsloth for efficient fine-tuning
const trainer = new UnslothTrainer({
model: config.baseModel,
dataset: config.dataset,
loraConfig: {
r: 16,
alpha: 32,
dropout: 0.1
}
});

return await trainer.train();
}

async fineTuneWithAxolotl(config: AxolotlConfig): Promise<FineTuneResult> {
// Use Axolotl for advanced fine-tuning
const axolotlConfig = this.buildAxolotlConfig(config);
return await this.executeAxolotlTraining(axolotlConfig);
}
}

Phase 3: Model Serving with vLLM (Week 5-6)

// src/services/serving/VLLMServingService.ts
export class VLLMServingService {
async deployModel(modelPath: string): Promise<ServingEndpoint> {
const vllmConfig = {
model: modelPath,
tensorParallelSize: 4,
gpuMemoryUtilization: 0.9,
maxModelLen: 8192
};

return await this.vllmClient.deploy(vllmConfig);
}
}

3. llmcli - CLI & Platform Orchestration​

Enhancement Plan​

Phase 1: Model Registry CLI Commands (Week 1-2)

// src/commands/model-registry.ts
export class ModelRegistryCommands {
async registerModel(options: RegisterModelOptions): Promise<void> {
const modelData = await this.prepareModelData(options);

// Register with GitLab Model Registry
await this.gitlabRegistry.register(modelData);

// Register with MLflow
await this.mlflowRegistry.register(modelData);

console.log(`βœ… Model registered: ${modelData.name}@${modelData.version}`);
}

async listModels(filter?: ModelFilter): Promise<ModelInfo[]> {
const models = await this.gitlabRegistry.listModels(filter);
return this.formatModelList(models);
}

async deployModel(modelId: string, target: DeploymentTarget): Promise<void> {
const model = await this.gitlabRegistry.getModel(modelId);
await this.deploymentService.deploy(model, target);
}
}

4. tddai - Test-Driven Development AI​

Enhancement Plan​

Phase 1: ML Model Testing Framework (Week 1-2)

// src/services/ml-testing/MLTestingFramework.ts
export class MLTestingFramework {
async testModelPerformance(model: Model, testData: TestDataset): Promise<TestResult> {
const metrics = await this.evaluateModel(model, testData);

return {
accuracy: metrics.accuracy,
precision: metrics.precision,
recall: metrics.recall,
f1Score: metrics.f1Score,
latency: metrics.latency,
throughput: metrics.throughput
};
}

async testModelRobustness(model: Model): Promise<RobustnessResult> {
const adversarialExamples = await this.generateAdversarialExamples(model);
const robustnessScore = await this.evaluateRobustness(model, adversarialExamples);

return { robustnessScore, adversarialExamples };
}
}

Open Source Tools Integration Strategy​

Core ML Infrastructure​

# Recommended Open Source Stack
ml_infrastructure:
experiment_tracking:
- mlflow: "Model lifecycle and experiment tracking"
- wandb: "Advanced experiment tracking and visualization"
- langfuse: "LLM observability and evaluation"

training_frameworks:
- transformers: "HuggingFace transformers library"
- accelerate: "Distributed training acceleration"
- peft: "Parameter-efficient fine-tuning"
- axolotl: "Advanced fine-tuning toolkit"
- unsloth: "2x faster fine-tuning"

model_serving:
- vllm: "High-performance inference"
- ray: "Distributed computing framework"
- triton: "GPU-optimized inference"

monitoring:
- prometheus: "Metrics collection"
- grafana: "Visualization dashboard"
- jaeger: "Distributed tracing"

Training Pipeline Integration​

# Example training pipeline with open source tools
import mlflow
import wandb
from transformers import Trainer
from accelerate import Accelerator
from peft import LoraConfig

def train_with_open_source_tools():
# Initialize tracking
mlflow.set_tracking_uri("http://mlflow:5000")
wandb.init(project="llm-platform")

# Configure LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1
)

# Setup distributed training
accelerator = Accelerator()

# Train with monitoring
with mlflow.start_run():
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset
)

trainer.train()

# Log metrics
mlflow.log_metrics(trainer.state.log_history)
wandb.log(trainer.state.log_history)

Model Training Strategy​

PyTorch + MLflow Integration​

Core Training Infrastructure​

  • Base Framework: PyTorch 2.1+ with CUDA 12+ support
  • Experiment Tracking: MLflow for comprehensive experiment management
  • Distributed Training: PyTorch DDP with Ray orchestration
  • Model Registry: GitLab ML Model Registry with automated versioning

Advanced Fine-Tuning Capabilities​

1. LoRA (Low-Rank Adaptation)

# Efficient fine-tuning with minimal computational overhead
from peft import LoraConfig, get_peft_model

lora_config = LoraConfig(
r=16, # Rank of adaptation
lora_alpha=32, # LoRA scaling parameter
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)

model = get_peft_model(base_model, lora_config)

2. QLoRA (Quantized LoRA)

# Memory-efficient training with 4-bit quantization
from transformers import BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto"
)

3. vLLM Integration for High-Performance Serving

# Production-ready model serving with vLLM
from vllm import LLM, SamplingParams

# Initialize vLLM engine
llm = LLM(
model="path/to/fine-tuned-model",
tensor_parallel_size=4,
gpu_memory_utilization=0.9,
max_model_len=8192
)

# High-throughput inference
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=512
)

outputs = llm.generate(prompts, sampling_params)

Training Pipeline Architecture​

1. Data Preprocessing

class DataProcessor:
def prepare_training_data(self, raw_data: List[Dict]) -> Dataset:
# Tokenization and formatting
tokenized_data = []
for example in raw_data:
messages = [
{"role": "system", "content": example["system"]},
{"role": "user", "content": example["input"]},
{"role": "assistant", "content": example["output"]}
]

formatted = self.tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False
)

tokenized_data.append({
"input_ids": formatted,
"labels": formatted.copy()
})

return Dataset.from_list(tokenized_data)

2. Training Configuration

class TrainingConfig:
# Training hyperparameters
learning_rate: float = 2e-4
batch_size: int = 4
gradient_accumulation_steps: int = 8
num_epochs: int = 3
warmup_steps: int = 100

# LoRA configuration
lora_r: int = 16
lora_alpha: int = 32
lora_dropout: float = 0.1

# Optimization
optimizer: str = "adamw_torch"
lr_scheduler: str = "cosine"
weight_decay: float = 0.01

# Memory optimization
gradient_checkpointing: bool = True
dataloader_pin_memory: bool = True
fp16: bool = True

3. MLflow Experiment Tracking

class MLflowTracker:
def log_training_run(self, config: TrainingConfig, metrics: Dict):
with mlflow.start_run(run_name=f"fine-tune-{datetime.now()}"):
# Log parameters
mlflow.log_params({
"learning_rate": config.learning_rate,
"batch_size": config.batch_size,
"lora_r": config.lora_r,
"lora_alpha": config.lora_alpha,
"num_epochs": config.num_epochs
})

# Log metrics
for epoch, epoch_metrics in metrics.items():
mlflow.log_metrics(epoch_metrics, step=epoch)

# Log model
mlflow.pytorch.log_model(
model,
"fine-tuned-model",
registered_model_name="llm-platform-model"
)

Axolotl Integration for Advanced Training​

Configuration Example

# axolotl_config.yml
base_model: microsoft/DialoGPT-medium
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
- path: ./training_data.jsonl
type: completion

dataset_prepared_path: ./prepared_data
val_set_size: 0.1
output_dir: ./outputs

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

wandb_project: llm-platform
wandb_entity: your-org
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:

logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Production Deployment Pipeline​

1. Model Validation

class ModelValidator:
def validate_fine_tuned_model(self, model_path: str) -> ValidationResult:
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Run validation tests
validation_results = {
"perplexity": self.calculate_perplexity(model, validation_dataset),
"response_quality": self.evaluate_responses(model, test_prompts),
"inference_speed": self.benchmark_inference(model),
"memory_usage": self.measure_memory_usage(model)
}

return ValidationResult(
passed=all(r.passed for r in validation_results.values()),
metrics=validation_results
)

2. Automated Deployment

class ModelDeployment:
def deploy_to_production(self, model_id: str) -> DeploymentResult:
# Download from model registry
model_path = self.download_model(model_id)

# Validate model
validation = self.validator.validate_fine_tuned_model(model_path)
if not validation.passed:
raise DeploymentError(f"Model validation failed: {validation.errors}")

# Deploy with vLLM
vllm_config = VLLMConfig(
model=model_path,
tensor_parallel_size=self.get_gpu_count(),
gpu_memory_utilization=0.9,
max_model_len=8192,
served_model_name=f"llm-platform-{model_id}"
)

endpoint = self.vllm_service.deploy(vllm_config)

# Register endpoint
self.service_registry.register_endpoint(endpoint)

return DeploymentResult(
success=True,
endpoint_url=endpoint.url,
model_id=model_id
)

Immediate Implementation Plan​

Week 1-2: Foundation Setup​

  1. GitLab Model Registry Configuration

    # Setup GitLab Model Registry
    curl -s https://gitlab.com/gitlab-org/incubation-engineering/ml/model-registry/-/raw/main/install.sh | bash

    # Configure environment
    export GITLAB_MODEL_REGISTRY_URL="${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/ml/model_registry"
    export MLFLOW_TRACKING_URI="http://mlflow:5000"
  2. MLflow Installation

    # Deploy MLflow with Docker Compose
    docker-compose up -d mlflow

    # Initialize model registry
    python scripts/init_model_registry.py
  3. Training Dependencies

    # Install core training packages
    pip install mlflow wandb transformers accelerate peft axolotl unsloth vllm

    # Install TypeScript packages
    npm install @mlflow/mlflow @wandb/wandb @huggingface/transformers

Week 3-4: Training Pipeline Implementation​

  1. Axolotl Configuration
  2. Unsloth Integration
  3. vLLM Model Serving
  4. MLflow Experiment Tracking

Week 5-6: Production Integration​

  1. Model Validation Framework
  2. Automated Deployment Pipeline
  3. Monitoring and Alerting
  4. Documentation and Testing

Success Metrics​

Technical Metrics​

  • Model Training Speed: 2x improvement with Unsloth
  • Inference Latency: <100ms with vLLM
  • Training Cost: 50% reduction with efficient fine-tuning
  • Model Registry Coverage: 100% of models tracked

Business Metrics​

  • Time to Deploy: 80% reduction in model deployment time
  • Model Performance: 15% improvement in accuracy
  • Development Velocity: 3x faster model iteration
  • Cost Efficiency: 60% reduction in training costs

This comprehensive model management strategy provides enterprise-grade AI capabilities with complete model lifecycle management, advanced training pipelines, and production-ready deployment infrastructure.